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Nonequilibrium phase transitions in models of adsorption and desorption
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The nonequilibrium phase transition in a system of diffusing, coagulating particles in the presence of a
steady input and evaporation of particles is studied. The system undergoes a transition from a phase in which
the average number of particles is finite to one in which it grows linearly in time. The exponents characterizing
the mass distribution near the critical point are calculated in all dimensions.
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I. INTRODUCTION wetting transitions. In these models, the system undergoes a
transition from a phase in which the interface is smooth to
There is a variety of physical phenomena in which theone in which it is rough. The exponents describing these
processes of diffusion, coagulation, adsorption, and desorgransitions have been found to be related to some underlying
tion play an important role. For example, submonolayer epcontact process undergoing an absorbing to active transition.
itaxial thin film growth involves deposition of atoms onto a The In-Out model studied in this paper differs from these
substrate and diffusion of these atoms leading to their aggrenodels by the lack of a surface tension term which tries to
gation into islands of increasing sig&]. A second example smoothen out the interface, and thus belongs to a different
is river networks which have been modeled by aggregatingmiversa”ty class.
masses in a steady influx of particlgs3]. Further examples  hg rest of the paper is organized as follows. In Sec. I,
include aerosols and clouds], colloids [S], and polymer- o model is defined, the results obtained in Ref.for the

ization [6]. - .
. . . =0 case are reviewed, and the results of this paper are
A simple lattice model that incorporates the above pro-’u pap

cesses is the In-Out mod@l,g] in which diffusing point size summarized. In Sec. Il a scaling relation is derived between

particles on a lattice coagulate together on contact formin%he critical e.xponents.'ln Sec. .IV’ 'the .phase n Wh'Ch.the
particles of larger mass. In addition unit mass is input uni- ean mass increases linearly with time is fully characterized.

formly at rateq, while unit mass evaporates from an existing !N S€¢- V. exactly solvable limits of the model, namedy-1
mass at rat@. The competition between adsorption and de-case, zero dimensions, and mean-ﬂeld_ solution, are dis-
sorption results in a nonequilibrium phase transition betwee§USSed. In Sec. V1, the exponents for arbitrarare derived
a phase in which the average mass in the system is finite # all d|menS|ons_W|th the help of an assumption. The r_esults
one in which it increases linearly with time. A quantity that are compared with Monte Carlo simulations in one dimen-
captures the features of the steady state is the mass distrib®0n. In Sec. VI, the results of the model are compared with
tion P(m,t). P(m,t) is the probability that a randomly cho- results of re!ated models. Section VII_I contains a summary
sen site has mass at timet. For fixed desorption rate, the and concludlng remarks. The Appendixes contain the details
distribution P(m,t) for large times was shown to change ©f the calculations.
from an exponential distribution at small values @fto a
power lawm™"c at q=q.(p) and to a different power law
m~ " for q>q.(p). Near the transition point,P(m,q Il. MODEL AND RESULTS
—(0c,t) was seen to have the scaling foff{m,q—qc,t)
~m~eY(m(g—qc) %, mt~%). The values of these exponents
in high dimensions were calculated using a mean-field ap- For simplicity, we define the model on a one dimensional
proximation. In one dimension, they were determined usindattice with periodic boundary conditions; generalizations to
Monte Carlo simulations. The numerical values in one di-higher dimensions is straight forward. Each sitef the lat-
mension were significantly different from the mean-field re-tice has a non-negative integer mass variafjle 0. Given a
sults. In this paper, these exponents are calculated in all dFertain configuration of masses at timye¢he system evolves
mensions. The model is also extended to one in whichn an infinitesimal timedt as follows. A sitei is chosen at
particles diffuse with a mass-dependent rate* with u random(with probability dt), and then the following events
=0. The critical exponents for this more general model arecan occur.(i) Adsorption: with probabilityq/(p+q+1),
also calculated. unit mass is adsorbed at sitehusm;,—m;+ 1. (ii) Desorp-
Related models have been studied in the context of norfion: if the massm; is greater than zero, then with probability
equilibrium wetting [9,10]. If the massm in the In-Out p/(p+g+1), unit mass is desorbed from sitg thus m,
model is identified with the height of a substrate, then the—m;—1 providedm;=0. (iii) Diffusion and aggregation: if
transition observed is qualitatively similar to nonequilibrium the massm; is greater than zero, then with probability
m; “/(p+qg+1) the massm; moves to a randomly chosen
nearest neighbor. If the target site already happens to have
*Email address: rrajesh@brandeis.edu some mass, then the total mass just adds up;nhusO and

A. Definition
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m;+1— M;1+m;. The initial condition is chosen to be one C. Summary of results
in which all sites have mass zero. The model has three pa- |, this paper, the In-Out model is studied f@&0. Using

rametersp,q, u. scaling arguments, a relation is derived between the expo-
_ nentsa and 7, thus reducing the number of unknown ex-
B. Review of results for u=0 ponents from three to two. In particular, it is shown that

For u=0, when all particles diffuse at the same rate, the
single site mass distribution at time P(m,t) was deter-
mined in large dimensions using a mean-field approximatio
and in one dimension using Monte Carlo simulatip8f It
was shown that when the adsorption ratevas increased d2+6d+4

a(pd+27.—2)=d, d=2. (5)

Yhe exponent. in d<2 is shown to be

keeping the desorption rafefixed, the system undergoes a Sdra) n=0
nonequilibrium phase transition across a critical lm€p) - ( ) 6)
from a phase in whiclP(m)=Iim;_..P(m,t) has an expo- ¢ (3—p)d+2 0< u<?
nential tail to one in which it has an algebraic tail for large d+2 M=
mass, i.e.,
. The exponent in d<2 is shown to be
e~ ™M whenqg<q,
P(m)~{ m™"  wheng=q 1) d*2 o
. d+4
m wheng>qc, = @
d+2
) o<u<2.
wherem* is a q dependent cutoff, ana and =, are expo- pnd+4
nents characterizing the power law decay. In addition, it was . _
argued that as a function of the small deviatiprq—q,,  The exponent) in d<2 is calculated fou=0 andu=1,
and large timd, P(m,q,t) displays the scaling form 1 0
/.L:
1 m ¢=4 d+2 _ (8)
P(MG.t)~ ——Y m?:r",t—>, 2 =
mTC a

In the growing phase, the exponemntcharacterizing the
in terms of three unknown exponents «, 7., and the two  power law decay of the mass distribution is shown to be
variable scaling functiory. The three phases will be called
as the exponentialphase §<q.), the critical phase (q _(2—p)d+2
=), and thegrowing phase ¢>qc). =T d+2

Of interest are two more exponents. The mass at each site
could be thought of as representing the height of an interfacen one dimension, whem=0, the exponents reduce tQ
In that case, two quantities of interest are the average veloc=11/6, «=3/5, and¢=1. This is in very good agreement
ity of the interfaceF =d(m)/dt and the fluctuations of the with the numerical results seen in RE8] (see Sec. Il B In
interface about its mean which would be dominatediy),  dimensions greater than two, the exponents take on their
where (---) denotes a spatial average. In the exponentiamean-field value, obtained by settinjto 2 in the above
phase(m) is finite and henc&=0. In the growing phase, equations.
the interface has a finite velocity, and the velocity increases

(€)

from zero asF~T?, whered is an exponent. At the critical IIl. SCALING RELATION BETWEEN a AND 7
point(m?)~tA. Using the scaling form Eq2), it is straight- ¢
forward to derive[8] In this section, a relation between and 7. is obtained
from scaling arguments for aj.. The dependence of the
0=p[1— a(2—10)]la, 3) largest mass in the system; ont can be obtained by the

catchment area argument as follows. Due to diffusion, the
massM; would sweep out an arelad in time t, whereL, is
B=a(3— 7). (4) the typical length scale in the system. In addition to the mass
contained in this areayl; also increases due to the average
The model whenu=0 was studied using a mean-field ap- flux F=d({m)/dt. Thus,
proximation that ignored the spatial correlations between
masses at different sit¢8]. It was shown thath=1, a=2/3, M~ LZFt. (10
and 7.=5/2 whenu=0. Correspondinglyf=2 and g=1/3.
In one dimension, the exponents whenr 0 were determined The typical lengthL, arises from diffusion:L,~ (Dt)2
numerically to ber,~1.83, ~0.61, $~1.01, 6~1.47, and  Substituting M * for the diffusion rateD, and usingF
B~0.71. ~t*=7)~1 from the scaling relation Eq(2), we obtain
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M~ tld+2e=l2+ud) Byt by definition[see Eq.(2)]  wherey is a crossover exponent. To make a comparison with

M;~t®. Equating the exponents, we obtain Eq. (14), one has to make the identificatidh~G’. Using
Egs. (3), (11), and (13), it is easy to show thafj®(7e"

a(pd+27,—-2)=d. (1)  ~F¥E+2) Also,
Thus, the number of unknown exponents reduces from three y=26/(d+2). (16)

to two. The above scaling arguments are valid only when
increases as a positive powertofThis restriction translates

to the conditionau<1. V. SOLVABLE LIMITS

In this section, we examine limiting cases of the model

IV. THE GROWING PHASE (gq>qc) which are analytically tractable. For the sake of continuity of
In this section, the behavior 8(m) in the growing phase nguerrrllt(aj?;ésthe details of the calculation are deferred to the
g>(. is discussed. The exponentas defined in Eq(l)] is PP '
expected to be independent of the precise values aridp .
as long as we are above the critical thresh8ld To obtainr, A. Solution for u=1
the convenient limitp=0 andq arbitrary may be studied. The special case when a masdiffuses asm™! can be

Different aspects of this limiting case have been studied isolved by examining the time evolution of the two point
the context of river networks, self-organized criticality, andcorrelations. Whenu=1, certain simplifications occur. We
epitaxial growth[11-18. We give a short derivation of the refer to Appendix A for details. It is shown that the criticgl
exponentr. In this limiting case of only adsorption, it is at which the mean mass increases with time is

known thatP(m,t) has the scaling form

9.=dp’g(p), 17
m
P(m,t)~m7f(t—5), (12 where
2md k 27d 1
where the scaling functiori(x) tends to a constanffor g(p):J 2_1 z_kd .
a 0 a

n<1) for small values ofx and decays exponentially for

large values ok. Since there is a constant influx of par- (1+ p)d_; cogki)
ticles, (m)=Ft. Therefore(2—7)=1. To obtain a second (18)
relation between the exponents, note that 84) is valid

when 7. is replaced byr and « by 6. Solving these two The exponents fop=1 is shown to bedsee Appendix A
exponent equalities, one obtains

2d+2
(2-w)d+2 (e (19
T dv2
_d+2 20
PACE (13) “Tdra (20
pd+2
. . . d+2
Equation(13) is valid whenu<1 andd<2. Ford>2, the b= —. (22)
mean-field results are correct. The=0, results were ob- 2
tained earlier in Refd.11,13,13. For u>0, the one and two . o
dimensional results were obtained earlig#,15. The de- Selving for 6 from Eq.(3), we obtaing=(d+2)/2.
pendence oP(m,t) on the fluxF can now be incorporated
into EqQ.(12) by simple dimensional arguments, B. Mean-field theory
W(d+2) The exponents may be computed in large dimensions by a
P(m,t)~ F m (14) mean-field analysis. This approximation involves ignoring
' T (F2d+2)yo )" the correlations between masses at two different sites. The

details of the calculation are presented in Appendix B. The
wherer and § are as in Eq(13). results are
The two variable scaling functiorY(x,y) in Eq. (2)

should be such that whexe1 (or mg?>1), it reduces to E u=0
the one variable scaling functidnin Eq. (14). This implies 2
that Y(x,y) ~x"c" 7f(y/x}~ %) whenx>1. Thus Te= M (22
2-2 0<u<2.
'q¢(7c_7) ( m ) 2
P(m,t)~ f , ) . ,
m” @1)° The exponentr in the mean field equals

036128-3



R. RAJESH

2 =0
3 m

(23)
o<u<2.

2+ u

The exponentp could be computed only fge=0 andu=1,

1 =0
¢= 2 wu=1. (24)
Using Eqgs.(3) and(16), we obtain
=2, w=0,1, (25
v=1, w=0,1 (26)

Comparison with the exact solution far=1 or calculating

the dimensiord when the mean-field exponents satisfy the

PHYSICAL REVIEW E 69, 036128 (2004

(33

Numerical simulations of the&=0 model in one dimension
had ¢~1.01 andf~1.47 [8] consistent with the above re-
sults. Knowingé, the exponents, and a can be solved for
from Egs.(3) and(11) to yield

_d2+6d+4 0 a4

TC_W’ M=, ( )
_d+2 0 3

a=q7z0 K0 (39

Specializing tod= 1, the exponents reduce t@=11/6 and
a=3/5. Again, these values are very close to the numerical
values of 1.83 and 0.61 obtained in RES].

When ©>0, we can calculate the exponent and « as

scaling relation Eq(11) shows that the upper critical dimen- follows. Consider the exponeptdefined by(m?)~t# at the

sion of the system is 2.

C. Solution for d=0

critical point. ClearlyB=«(3—7;). Note that whenu>0,
B=1 in the mean-field analysis as well as in zero dimen-
sions. Thus, using the argument of monotonicity of expo-
nents, we obtain

In zero dimensions, the problem may be solved for in a

straightforward manneisee Appendix € The exponents are

independent ofx, since there is no diffusion. In this case,

T.=1, (27
1
a=z, (28
$=1, (29)
for all values ofu. Using Egs.(3) and(16), we obtain
0=1, (30)
y=1. (32)

VI. EXPONENTS FOR ARBITRARY u AND d

a(3—71)=1, wu>0. (36
Solving Egs.(11) and(36), we obtain
(3—u)d+2
TCZT' O<u<2, (37
_ dr2 0 2 38
= dra <p<2. (39

Whenw=1 or whend=2, the results match the exact results
derived in Sec. IV. The exponeutfor >0 is still undeter-
mined, and there seems to be no easy way to calculate it.
The analytical results are now compared with results from
Monte Carlo simulations in one dimension. Whe+=0,
simulations were done in R€f8]. As pointed out earlier in
this section, the numerical values of the exponents are in

The question remains as to what the values of the expd=l0se agreement with that obtained in this paper. We there-
nents are in arbitrary dimensions. They can be determinefpre concentrate on nonzero values ofThe exponent that
with the help of an assumption. We make the assumption tha$ determined numerically is; for ©=0.25 andu=0.5. The
the critical exponents for a givem are a monotonic function Simulations were done on a one dimensional lattice of size
of dimensiond. This assumption is reasonable as known ex-1000 with periodic boundary conditionB(m) was obtained

ponents for most systems at their critical pdifar example,
the Ising modeél have this property.
Consider first the exponents when=0. Notice that the

by averaging over FOrealizations.
In Fig. 1, the results fo=0.25 is shownP(m) is mea-
sured forg=q.,~0.380 whenp=1.0, and for the growing

exponent¢ for u=0 takes on the same value in the meanphase in whiclp is set to zero. The critical, was fixed to be

field ord=2 [see Eq(24)] as well as idd=0 [see Eq(29)].
Assuming that¢(d) should be monotonic id, we obtain

$=1,

Consider now the exponent [as defined in Eq(15)]. It
takes the value 1 id=0 [see Eq(31)] and in the mean-field
limit [see Eq.(26)]. Hence,y=1 in all dimensions or

n=0. (32

that value ofg at which the distribution changed from an
exponential to a power law. A best fit gives=1.58+0.04
and 7=1.25+0.01. These should be compared with the ana-
Iytical results7,=1.58 ... andr=1.25.

Figure 2 is as in Fig. 1, except that=0.5 and g,
~0.448. A best fit gives;=1.47+0.04 andr=1.17+0.01.
These should be compared with the analytical results
=15... and=1.16....
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102 f— ; % arguments that for the charge model, irrespective of the dif-
y ) fusion rates thaf19]
10? (m?)~t, t>1. (39
10 Assuming scaling foP(m,t) as in Eq.(12) and the scaling
a relation Eq.(11), it is easy to see th&(m)~m~ "ch, where
X
10° (3—p)d+2
Tch:Tv O<u<2. (40
10° |
But this is the same ag, obtained for the In-Out modé¢tee
107 . . Eqg. (37)]. Thus, the charge model and the In-Out model ap-
10! 102 10° 10 pears to have the same behavior whenO.

m A reason for this could be the following. Whewn=0,
o ) ] B there is a chance that large positive masses get neutralized by
FIG. 1. The variation of(m) with mis shown at the critical 506 negative masses in the charge model. This process is
point (bottom curvé and in the growing phaséop C.urve' The totally absent in the In-Out model, resulting in the exponents
results are foru=0.25. A best fit for the curves give exponent being different. Whenu>0, large positive and negative
values7.=1.58+0.04 andr=1.25+0.01. . . : - .
charges get immobilized and their collision becomes infre-
quent. Hence, one could ignore this process in the charge
VII. CONNECTION TO RELATED MODELS model and hence the two models become qualitatively simi-
lar. A pitfall of this argument is that it predicts that for
=0 should be less than,,, contrary to what is seen. Thus,
e exact connection between these two models remains un-

In this section, similarities between the In-Out model and
other related models of aggregation are discussed. A mod
that closely resembles the model studied in this paper is thclear
charge model with adsorptidii7—-19. In this model, there _ .
is no longer the restriction that the masses have to be non- Another model which is related to the In-Out model is a

negative. Also;+1 and—1 masses are input at the same rate.mOOIeI of coagulatl_on with f_rag_mentat|c{r7,2(_),21]. In this .
In the limit of large time,P(m) for this model is a power law model, the desorption at a site is accompanied by adsorption

P(m)~|m| =5 for [m|>1 in one dimension. This model at the neighboring site, thus conserving mass locally. In this

could be expected to have the same behavior as the In-O odel, there is a phase transition from a phase in which

model at the critical point, since the growth velocity is zero. (m) is exponentially distributed to one in which it is a

However, the exponent for the charge model is different fromPOWer law, accor_‘npamed by a infinite aggregate which ac-
commodates a finite fraction of the total mass. When the

the value 11/6 obtained for the In-Out model, showing that iffusion constant is m dependent. it w hown[@H
the restriction of non-negative masses is relevant. We no usion constant IS mass dependent, as shown[2H
the exponent in the mean-field limit is exactly the same as

ask whether it is relevant wheg>0. ; ; T .
Since the charge model was not studied earlier o0, that of the In-Out model in the mean-field limit. However, in
dimensions lower than the upper critical dimension, the ex-

we now give a short derivation of the power law exponent ts in th del with i . |
using scaling arguments. It was shown based on very gener pnents in the model with mass conservation remains equa
o the mean-field value, unlike the In-Out model.

10 . VIIl. SUMMARY AND CONCLUSIONS
10 To summarize, the exponents characterizing the phase
transition from a phase with finite mean height to one in
which it grows linearly with time in the In-Out model were
10* calculated. The model was extended to one in which particles
;é diffuse with a mass-dependent rddm)cm™#. The expo-
10° nents were shown to have a discontinues jumpa0. The
exponents are unrelated to previously studied universality
“ classes of nonequilibrium phase transitions.
10 There are several questions that remain unanswered.
Other models which show a wetting transition as seen in the
107 = = = . In-Out model have exponents which can be expressed in
10 10 10 10 terms of exponents of absorbing phase transitigh40].

m Here, there seems to be no apparent connection to any un-

FIG. 2. The variation ofP(m) with m is shown at the critical ~ derlying absorbing phase transition. It would be interesting
point (bottom curve and in the growing phasé&op curve. The to find connections to other models of nonequilibrium phase

results are foru=0.50. A best fit for the curves give exponent transitions.
values7,=1.47+0.04 andr=1.17+0.01. The calculation of exponents in this paper for arbitrary
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relied on the assumption that the exponents are monotonigC(x)
with dimension. While simulations do support the results that—;—
are obtained, it is important to have a more rigorous deriva-

tion of the exponents without making this assumption. Also, 14

one would expect logarithmic corrections to the power laws ~ =—2C,(x)+ Al 2 C.(Xq, ..o X FK, .o Xg)
in two dimensions. These have been ignored in this paper. A J=1 k=1

calculation of these corrections would be of interest. +2(q—p)p+2pD(xX)+ &, o(q+ ps) +(m?~#)

A connection to the charge model was pointed out in Sec.

VII. The models seem to be similar fg=>0, while different d

for u=0. The precise connection between the two would be X| 2007y 21 k=2+1 Oxp. 0" Ox 40" T+ Ox0
worth exploring since the charge model is analytically more ! -
tractable. Finally, the discontinuity of exponents.at0 re- (AB6)

mains a puzzle. .
where C(x)=(m,mg), C,(x)=(mumg *), p=(m) and

D(x)= <mx5m0,0>-
Consider Eq(A6) in the steady state when the time de-
In this appendix, we derive the exponents f@=1 in  rivative is set to zero. For arbitrary values af the right-
arbitrary dimensions. We do so by examining the two pointhand side of Eq.(A6) involves three unknownsC ,(x),
correlations in the system in the steady state. To fix notationd (x), and p. However, whenu=1, a simplification occurs
let x" denote one of the @ nearest neighbors of the site  pecause
Let n(x,x’,t) be the mass transferred from sit¢o x” at time

APPENDIX A: EXACT SOLUTION FOR pu=1

t in a time intervalAt. From the definition of the model, it Ci(x)=p—D(x), (A7)
follows that ) )
thus reducing the number of unknowns to two. Define
ith b 1 At .
ax =1 PR RE e A F(k)=2 [D()~p(1-s)]e*. (A8)

0  otherwise. ) ,
Solving for F(k) from Eg. (A6), we obtain

To orderAt, the only nonzero two point correlation in the

o qd—ppd
noise is =+
F(==p+ o5 (A9)
m2~#At
(X)) =——. (A2)  where
2d
d
Let I(x,t) be the mass transferred due to adsorption and h(k)zz cogk))—(1+p)d. (A10)
desorption from the sit& at timet in an infinitesimal time =1
At. Then,

To obtainp, we use the fact that the constant termFick)
equals—p(1—s). Then

1 with probqAt
I(x,t)=4 —1+dm o with probpAt (A3) e dpggp) (AL1)
0 otherwise. dp?g(p)—q’
To orderAt, the only nonzero two point correlation in the Where
input | is o fzwdkl 2ndk,y 1
ap)=1 S5—--- 5 d :
(I(x,1)®)=(q+p9)At, (A4) 0o 2w 0 27
(1+p)d—2, cosk)
wheres=3%,,_1P(m) is the occupation probability. " (A12)

The masan,(t) at lattice sitex at timet evolves as
Thus, the mean density diverges asq.) ~*, where

My(t+ At =myt)— >, 7(x,x',t)+ >, (X', x,t)+1(xt). g.=dp?g(p). (A13)
x’ X'
(AS) Specializing the result to one and two dimensions,
To obtain the two point correlations, we multiply,(t a2
+At) by my(t+At) and take averages over the possible qlP= P
stochastic moves. Using Eq#1)—(A5), we obtain ¢ \/p+2'
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2 1

1+p

2p

2D _
L TR : (A14)

whereK is the complete elliptic integral of the first kind.
The form of the divergence of the densitygapproaches
e, namely(m)~q ! means that

(A15)

d(2—7)=1 for u=1,

PHYSICAL REVIEW E 69, 036128 (2004

dP(m) _
T —(m *+s"+p+q)P(m)+qP(m—1)

" P(m)P(m—m’
+pP(M+1)+ >, (m")P( ),
m=1 m’'#

(B1)

dP(0)
at =ss'—q+qs+pP(1),

(B2)

in all dimensions. To obtain one more relation between the

exponents, we considelk m?)/dt for large times at the criti-
cal point. First, we need to invert E¢A9) to obtainD (1)
wherel denotes the sit€l,0,Q . . .). Inverting, we obtain

D(1)=

+(q—pp)[1—d(1+p)g(p)].
(A16)

p(p—Qq)
q

We now make the assumption that the leading time depen-
dence toD(1) is obtained by restoring the time dependenc

of p. Then, wherx=0, Eq. (A6) reduces to

d(m?)
dt

(1+p)(a—qc)
p

~2p(t) +2qd(1+p)g(p).

(A17)

If we now take the limitq— g, beforet—co, then we obtain
that(m?)~t. Thus

a(3—71)=1 for u=1, (A18)

in all dimensions. Solving for the exponents, «, and ¢
from Egs.(11), (A15), and(A18), we obtain

2d+2

g2 (A9
d+2

a= g4 (A20)
d+2

¢=—5— (A21)

Correspondinglyg= (d+2)/2 andB=1.

APPENDIX B: MEAN-FIELD SOLUTION

In this appendix, we derive the exponents for0 using

a mean-field approximation. This approximation involves ig-
noring correlations between the masses, i.e., replacing joint
probability distribution functions by product of single point

wheres=2,,_,P(m) ands’'=X,-,m~#P(m). The differ-

ent terms enumerate the number of ways the mass at a cer-
tain site can change. Then it follows that

n—-1

o >=k21 (E)<m"><m”k">+q+(—1)”ps

dt

n-1
+2
k=1

E)[q+<—1>kp]<m“‘k>- (B3)

€consider first the steady state solution of E83) when the
time derivatives may be set to zero. Then, puttirgl, and
solving for the occupation probability; we obtain

S=—. (B4)

p

The mean-field equations take on a simpler form for the
casesu=0 and u=1, and hence we solve them separately
from the arbitraryu case. Though all the mean-field expo-
nents foru=0 were derived in Ref.8] using the generating
function method, they will be rederived here using a different
method which will be simpler to generalize to the=0 case.

1. p=0

On choosingh=2 in Eq.(B3) and taking the steady state
limit, a quadratic equation fafm) is obtained which can be
solved to yield

V(p—a)*-4q

(my=P=9" i

(BS)

The expression fo{m) becomes invalid when expression
under the square root sign becomes negative, thus foging
Solving, we obtain

Qe=p+2-2\1+p,

where the sign is chosen by the condition that=0 at p
=0. Consider now the equation correspondingnte3 in
Eq. (B3). Solving for(m?), we obtain

(B6)

~ (p+a)m)

™= -g-2(m &

distributions. Then, the master equation for the temporal evoBut the denominator tends to zero &g, wheref=q.—q.

lution of P(m,t) is

Therefore, near the transition poim?) diverges as

036128-7
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(B8)

Consider now the equation correspondingnte4 in Eg.
(B3). Solving for(m®), we obtain

3(m?)2+3(q+p)(m?)+2(q—p)(m)+q

(m)= 2(p—q—2(m))

(B9)

1
'q3/2’

~ 0. (B10)

Knowing the behavior ofm?) and(mq) near the transition
point, we immediately obtain

1
$(3-10)= 5, (B11)
3
$(3=7)=73, (B12)
which can be solved to give
T7.=5/2, (B13
$=1. (B14)

To calculate¢p and 7 we had first taken the limit— oo fol-

lowed by the limitg— 0. In order to calculater, we need to
take the limits in the opposite order, nam@&ly-0 followed
by t—o. We first note that in this limis=q/p and (m)

=(p—q)/2. Then choosingn=3 in Eqg.(B3), we obtain

d(m*) _3(p*—qp)

T 5 . (B15)
Thus,
a(d—1)=1. (B16)
Substituting forr., we obtain
2
a=z. (B17)

Thus, in the mean-field limit, the scaling function takes on

the form

m
MY, — (B18)

EIR n=0.

1
P(m,q,t)~ m_5/2Y

2. p=1
We start again with Eqs(B3) and (B4). For u=1, Eq.
(B3) simplifies becausém” ¥~ #) reduces to an integer mo-

ment ofm. Choosingn=2 in Eq.(B3) in the steady state, we
obtain

PHYSICAL REVIEW E 69, 036128 (2004

Pq

(m=—-——-. (B19)
p°—pdg—q
The mean masém) diverges whem=q., where
2
P
9e=77 0 (B20)

Choosingn=3 in Eq.(B3) in the steady state, we obtain

(myZ+(g+p)(m)
p’-pg—-q

Equations(B19) and (B21) imply that(m)~g~! and(m?)
~4 2 wheng—0. Thus,

(m?)=p (B21)

H(2—1)=1, (B22)
$(3—70)=3. (B23)
Solving, we obtain
3
=5 (B24)
b=2. (B25)

In order to calculater, we need to setj=q. and take the
large time limit. Then choosing=3 in Eq.(B3), we obtain

d(m?)
dt

2p?
(1+p)°
If we assume that the first term is the dominant term, then we

reach a contradiction for (namely,7=1). The other alterna-
tive is to that{m?)~t, implying thata(3—7,)=1 or

~t2ac(277')71

(B26)

(B27)

Thus, in the mean-field limit, the scaling function takes on
the form

, m=1 (B28)

_ 1 . m
P(m,q,t)~m—3/2Y mq2t7’3

3. p>0

We will follow the same procedure as for tlee=0 and the
u=1 cases. However, for arbitragy, we are no longer able
to determine neither the critical valug nor the exponeng.
Consider the equations arising from choosimg2 andn
=3 in Eq. (B3) in the steady state,

<m1‘”>:p—q—<%>, (B29)
2
<m2“>=q<<m—n;2>—(p+q)- (B30

036128-8
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To satisfy Eq.(B30), we require thatm) diverges at the The steady state solution is obtained by setting the time de-

critical point. Substituting the scaling form, we obtain rivatives to zero. It is then straightforward to obtain
3—pu—7)=¢(3—7)—2¢(2— B31 - m
b( m— 1) = ( 7c) b( 7c) ( ) P(m)= pP—q (9 . m=o. (C3)
implying that PP
This solution is valid whem<p. Forq=q.=p, there is no
Te=2— % (B32)  hontrivial steady state solution. The typical mass diverges as

q approaches), as (@—q.) ~%; therefore

To calculate the exponeant, all we require is thagm!™#) is b=1. (C4)
finite at the critical point and is equal {—q. This follows
from Eq. (B29). Now, if we stay at the transition point, we Also, the occupation probabilitg=1 whenq=q,. Sinces

obtain thatd(m?)/dt=2q implying that cannot increase beyond 1, it remains stuck at 1 for all further
values ofg. When§=q—q, is positive,d(m)/dt=q—ps
(m?)~t. (B33)  —7. This means tha#=1.

The exponents. and @ may be obtained by solving the
problem atq=q,. In this case if one were to identifiyn as
2 the coordinate of a random walker, then the problem reduces
=5 (B34)  to a problem of a random walker with a reflecting barrier at
K the origin. This problem is easily solv¢d2] and in the limit

Thus, in the mean-field limit, the scaling function takes on©f large time,
the form 2

1 -m
P(m,t)m—ex;{

Vgt 4qt

The exponents,; anda may be read off from Eq.C5) to be

Thereforea(3—7.)=1 or

), t>1. (CH

~ 1 _, M

P(m,q,t)NmTM/ZY<mq ,m), O<,u<2
(B35)

T.=1, (Co)
APPENDIX C: SOLUTION FOR d=0

. . . 1
In zero dimensions, the problem becomes analytically a=—=, (C7
tractable as diffusion no longer plays a role. Therefore, the 2
exponents are independentof The master equation for the

. L ) in zero dimensions.
evolution of the mass distributioR(m) is

When gq>q., the problem reduces to the problem of a

dP(m) rapdom we}lker .with a drift. and a reflecting barrier at the
T —(p+q)P(m)+pP(m+1)+qP(m—1), origin. Again, this problem is easily solvable,
(D P(m,t)= i 5( - 1) m,t>1. (C8)
dP(O) , m (q_p)t (q_p)t , ,
a4 P(0)+pP(1). €2 Clearly, the exponeny=1 [see Eq.(15) for definition].
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