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Nonequilibrium phase transitions in models of adsorption and desorption
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The nonequilibrium phase transition in a system of diffusing, coagulating particles in the presence of a
steady input and evaporation of particles is studied. The system undergoes a transition from a phase in which
the average number of particles is finite to one in which it grows linearly in time. The exponents characterizing
the mass distribution near the critical point are calculated in all dimensions.
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I. INTRODUCTION

There is a variety of physical phenomena in which t
processes of diffusion, coagulation, adsorption, and des
tion play an important role. For example, submonolayer
itaxial thin film growth involves deposition of atoms onto
substrate and diffusion of these atoms leading to their ag
gation into islands of increasing size@1#. A second example
is river networks which have been modeled by aggrega
masses in a steady influx of particles@2,3#. Further examples
include aerosols and clouds@4#, colloids @5#, and polymer-
ization @6#.

A simple lattice model that incorporates the above p
cesses is the In-Out model@7,8# in which diffusing point size
particles on a lattice coagulate together on contact form
particles of larger mass. In addition unit mass is input u
formly at rateq, while unit mass evaporates from an existi
mass at ratep. The competition between adsorption and d
sorption results in a nonequilibrium phase transition betw
a phase in which the average mass in the system is finit
one in which it increases linearly with time. A quantity th
captures the features of the steady state is the mass dis
tion P(m,t). P(m,t) is the probability that a randomly cho
sen site has massm at timet. For fixed desorption ratep, the
distribution P(m,t) for large times was shown to chang
from an exponential distribution at small values ofq to a
power lawm2tc at q5qc(p) and to a different power law
m2t for q.qc(p). Near the transition point,P(m,q
2qc ,t) was seen to have the scaling formP(m,q2qc ,t)
;m2tcY„m(q2qc)

f,mt2a
…. The values of these exponen

in high dimensions were calculated using a mean-field
proximation. In one dimension, they were determined us
Monte Carlo simulations. The numerical values in one
mension were significantly different from the mean-field
sults. In this paper, these exponents are calculated in al
mensions. The model is also extended to one in wh
particles diffuse with a mass-dependent ratem2m with m
>0. The critical exponents for this more general model
also calculated.

Related models have been studied in the context of n
equilibrium wetting @9,10#. If the massm in the In-Out
model is identified with the height of a substrate, then
transition observed is qualitatively similar to nonequilibriu
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wetting transitions. In these models, the system undergo
transition from a phase in which the interface is smooth
one in which it is rough. The exponents describing the
transitions have been found to be related to some underl
contact process undergoing an absorbing to active transi
The In-Out model studied in this paper differs from the
models by the lack of a surface tension term which tries
smoothen out the interface, and thus belongs to a diffe
universality class.

The rest of the paper is organized as follows. In Sec.
the model is defined, the results obtained in Ref.@8# for the
m50 case are reviewed, and the results of this paper
summarized. In Sec. III a scaling relation is derived betwe
the critical exponents. In Sec. IV, the phase in which t
mean mass increases linearly with time is fully characteriz
In Sec. V, exactly solvable limits of the model, namelym51
case, zero dimensions, and mean-field solution, are
cussed. In Sec. VI, the exponents for arbitrarym are derived
in all dimensions with the help of an assumption. The resu
are compared with Monte Carlo simulations in one dime
sion. In Sec. VII, the results of the model are compared w
results of related models. Section VIII contains a summ
and concluding remarks. The Appendixes contain the det
of the calculations.

II. MODEL AND RESULTS

A. Definition

For simplicity, we define the model on a one dimension
lattice with periodic boundary conditions; generalizations
higher dimensions is straight forward. Each sitei of the lat-
tice has a non-negative integer mass variablemi>0. Given a
certain configuration of masses at timet, the system evolves
in an infinitesimal timedt as follows. A sitei is chosen at
random~with probability dt), and then the following events
can occur.~i! Adsorption: with probabilityq/(p1q11),
unit mass is adsorbed at sitei; thusmi→mi11. ~ii ! Desorp-
tion: if the massmi is greater than zero, then with probabilit
p/(p1q11), unit mass is desorbed from sitei; thus mi
→mi21 providedmi>0. ~iii ! Diffusion and aggregation: if
the massmi is greater than zero, then with probabilit
mi

2m/(p1q11) the massmi moves to a randomly chose
nearest neighbor. If the target site already happens to h
some mass, then the total mass just adds up; thusmi→0 and
©2004 The American Physical Society28-1



e
p

th

tio

a

ge

a

d

s
c
lo

tia
,
se
l

p-
e

po-
x-

t

heir

e

the

ass
ge

R. RAJESH PHYSICAL REVIEW E 69, 036128 ~2004!
mi 61→mi 611mi . The initial condition is chosen to be on
in which all sites have mass zero. The model has three
rameters,p,q,m.

B. Review of results formÄ0

For m50, when all particles diffuse at the same rate,
single site mass distribution at timet, P(m,t) was deter-
mined in large dimensions using a mean-field approxima
and in one dimension using Monte Carlo simulations@8#. It
was shown that when the adsorption rateq was increased
keeping the desorption ratep fixed, the system undergoes
nonequilibrium phase transition across a critical lineqc(p)
from a phase in whichP(m)5 limt→`P(m,t) has an expo-
nential tail to one in which it has an algebraic tail for lar
mass, i.e.,

P~m!;H e2m/m* whenq,qc

m2tc whenq5qc

m2t whenq.qc ,

~1!

wherem* is a q dependent cutoff, andt and tc are expo-
nents characterizing the power law decay. In addition, it w
argued that as a function of the small deviationq̃5q2qc ,
and large timet, P(m,q̃,t) displays the scaling form

P~m,q̃,t !;
1

mtc
YS mq̃f,

m

taD , ~2!

in terms of three unknown exponentsf, a, tc , and the two
variable scaling functionY. The three phases will be calle
as the exponentialphase (q,qc), the critical phase (q
5qc), and thegrowing phase (q.qc).

Of interest are two more exponents. The mass at each
could be thought of as representing the height of an interfa
In that case, two quantities of interest are the average ve
ity of the interfaceF5d^m&/dt and the fluctuations of the
interface about its mean which would be dominated by^m2&,
where ^•••& denotes a spatial average. In the exponen
phase,̂ m& is finite and henceF50. In the growing phase
the interface has a finite velocity, and the velocity increa
from zero asF;q̃u, whereu is an exponent. At the critica
point ^m2&;tb. Using the scaling form Eq.~2!, it is straight-
forward to derive@8#

u5f@12a~22tc!#/a, ~3!

b5a~32tc!. ~4!

The model whenm50 was studied using a mean-field a
proximation that ignored the spatial correlations betwe
masses at different sites@8#. It was shown thatf51, a52/3,
andtc55/2 whenm50. Correspondingly,u52 andb51/3.
In one dimension, the exponents whenm50 were determined
numerically to betc'1.83, a'0.61,f'1.01,u'1.47, and
b'0.71.
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C. Summary of results

In this paper, the In-Out model is studied form>0. Using
scaling arguments, a relation is derived between the ex
nentsa and tc , thus reducing the number of unknown e
ponents from three to two. In particular, it is shown that

a~md12tc22!5d, d<2. ~5!

The exponenttc in d<2 is shown to be

tc5H d216d14

2~d12!
m50

~32m!d12

d12
0,m,2.

~6!

The exponenta in d<2 is shown to be

a5H d12

d14
m50

d12

md14
0,m,2.

~7!

The exponentf in d<2 is calculated form50 andm51,

f5H 1 m50

d12

2
m51.

~8!

In the growing phase, the exponentt characterizing the
power law decay of the mass distribution is shown to be

t5
~22m!d12

d12
. ~9!

In one dimension, whenm50, the exponents reduce totc
511/6, a53/5, andf51. This is in very good agreemen
with the numerical results seen in Ref.@8# ~see Sec. II B!. In
dimensions greater than two, the exponents take on t
mean-field value, obtained by settingd to 2 in the above
equations.

III. SCALING RELATION BETWEEN a AND tc

In this section, a relation betweena and tc is obtained
from scaling arguments for allm. The dependence of th
largest mass in the systemMt on t can be obtained by the
catchment area argument as follows. Due to diffusion,
massMt would sweep out an areaLt

d in time t, whereLt is
the typical length scale in the system. In addition to the m
contained in this area,Mt also increases due to the avera
flux F5d^m&/dt. Thus,

Mt;Lt
dFt. ~10!

The typical lengthLt arises from diffusion:Lt;(Dt)1/2.
Substituting Mt

2m for the diffusion rateD, and usingF
;ta(22tc)21 from the scaling relation Eq.~2!, we obtain
8-2
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Mt;t [d12a(22tc)]/(21md). But, by definition @see Eq.~2!#
Mt;ta. Equating the exponents, we obtain

a~md12tc22!5d. ~11!

Thus, the number of unknown exponents reduces from th
to two. The above scaling arguments are valid only whenLt
increases as a positive power oft. This restriction translates
to the conditionam,1.

IV. THE GROWING PHASE „qÌqc…

In this section, the behavior ofP(m) in the growing phase
q.qc is discussed. The exponentt @as defined in Eq.~1!# is
expected to be independent of the precise values ofq andp
as long as we are above the critical threshold@8#. To obtaint,
the convenient limitp50 and q arbitrary may be studied
Different aspects of this limiting case have been studied
the context of river networks, self-organized criticality, a
epitaxial growth@11–16#. We give a short derivation of the
exponentt. In this limiting case of only adsorption, it i
known thatP(m,t) has the scaling form

P~m,t !;m2t f S m

td D , ~12!

where the scaling functionf (x) tends to a constant~for
m,1! for small values ofx and decays exponentially fo
large values ofx. Since there is a constant influxF of par-
ticles, ^m&5Ft. Therefored~22t!51. To obtain a second
relation between the exponents, note that Eq.~11! is valid
when tc is replaced byt and a by d. Solving these two
exponent equalities, one obtains

t5
~22m!d12

d12
,

d5
d12

md12
. ~13!

Equation~13! is valid whenm,1 andd<2. For d.2, the
mean-field results are correct. Them50, results were ob-
tained earlier in Refs.@11,13,12#. For m.0, the one and two
dimensional results were obtained earlier@14,15#. The de-
pendence ofP(m,t) on the fluxF can now be incorporated
into Eq. ~12! by simple dimensional arguments,

P~m,t !;
Fd/(d12)

mt
f S m

~F2/(d12)t !dD , ~14!

wheret andd are as in Eq.~13!.
The two variable scaling functionY(x,y) in Eq. ~2!

should be such that whenx@1 ~or mq̃f@1), it reduces to
the one variable scaling functionf in Eq. ~14!. This implies
that Y(x,y);xtc2t f (y/x12a/d) whenx@1. Thus

P~m,t !;
q̃f(tc2t)

mt
f S m

~ q̃gt !dD , ~15!
03612
ee
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whereg is a crossover exponent. To make a comparison w
Eq. ~14!, one has to make the identificationF;q̃u. Using
Eqs. ~3!, ~11!, and ~13!, it is easy to show thatq̃f(tc2t)

;Fd/(d12). Also,

g52u/~d12!. ~16!

V. SOLVABLE LIMITS

In this section, we examine limiting cases of the mod
which are analytically tractable. For the sake of continuity
argument, the details of the calculation are deferred to
Appendixes.

A. Solution for mÄ1

The special case when a massm diffuses asm21 can be
solved by examining the time evolution of the two poi
correlations. Whenm51, certain simplifications occur. We
refer to Appendix A for details. It is shown that the criticalqc
at which the mean mass increases with time is

qc5dp2g~p!, ~17!

where

g~p!5E
0

2pdk1

2p
•••E

0

2pdkd

2p

1

~11p!d2(
i 51

d

cos~ki !

.

~18!

The exponents form51 is shown to be~see Appendix A!

tc5
2d12

d12
, ~19!

a5
d12

d14
, ~20!

f5
d12

2
. ~21!

Solving for u from Eq. ~3!, we obtainu5(d12)/2.

B. Mean-field theory

The exponents may be computed in large dimensions b
mean-field analysis. This approximation involves ignori
the correlations between masses at two different sites.
details of the calculation are presented in Appendix B. T
results are

tc5H 5

2
m50

22
m

2
0,m,2.

~22!

The exponenta in the mean field equals
8-3
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a5H 2

3
m50

2

21m
0,m,2.

~23!

The exponentf could be computed only form50 andm51,

f5H 1 m50

2 m51.
~24!

Using Eqs.~3! and ~16!, we obtain

u52, m50,1, ~25!

g51, m50,1. ~26!

Comparison with the exact solution form51 or calculating
the dimensiond when the mean-field exponents satisfy t
scaling relation Eq.~11! shows that the upper critical dimen
sion of the system is 2.

C. Solution for dÄ0

In zero dimensions, the problem may be solved for in
straightforward manner~see Appendix C!. The exponents are
independent ofm, since there is no diffusion. In this case,

tc51, ~27!

a5
1

2
, ~28!

f51, ~29!

for all values ofm. Using Eqs.~3! and ~16!, we obtain

u51, ~30!

g51. ~31!

VI. EXPONENTS FOR ARBITRARY m AND d

The question remains as to what the values of the ex
nents are in arbitrary dimensions. They can be determi
with the help of an assumption. We make the assumption
the critical exponents for a givenm are a monotonic function
of dimensiond. This assumption is reasonable as known
ponents for most systems at their critical point~for example,
the Ising model! have this property.

Consider first the exponents whenm50. Notice that the
exponentf for m50 takes on the same value in the me
field or d52 @see Eq.~24!# as well as ind50 @see Eq.~29!#.
Assuming thatf(d) should be monotonic ind, we obtain

f51, m50. ~32!

Consider now the exponentg @as defined in Eq.~15!#. It
takes the value 1 ind50 @see Eq.~31!# and in the mean-field
limit @see Eq.~26!#. Hence,g51 in all dimensions or
03612
a
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u5
d12

2
, m50. ~33!

Numerical simulations of them50 model in one dimension
had f'1.01 andu'1.47 @8# consistent with the above re
sults. Knowingu, the exponentstc anda can be solved for
from Eqs.~3! and ~11! to yield

tc5
d216d14

2~d12!
, m50, ~34!

a5
d12

d14
, m50. ~35!

Specializing tod51, the exponents reduce totc511/6 and
a53/5. Again, these values are very close to the numer
values of 1.83 and 0.61 obtained in Ref.@8#.

When m.0, we can calculate the exponenttc and a as
follows. Consider the exponentb defined bŷ m2&;tb at the
critical point. Clearlyb5a(32tc). Note that whenm.0,
b51 in the mean-field analysis as well as in zero dime
sions. Thus, using the argument of monotonicity of exp
nents, we obtain

a~32tc!51, m.0. ~36!

Solving Eqs.~11! and ~36!, we obtain

tc5
~32m!d12

d12
, 0,m,2, ~37!

a5
d12

md14
, 0,m,2. ~38!

Whenm51 or whend52, the results match the exact resu
derived in Sec. IV. The exponentf for m.0 is still undeter-
mined, and there seems to be no easy way to calculate

The analytical results are now compared with results fr
Monte Carlo simulations in one dimension. Whenm50,
simulations were done in Ref.@8#. As pointed out earlier in
this section, the numerical values of the exponents are
close agreement with that obtained in this paper. We the
fore concentrate on nonzero values ofm. The exponent that
is determined numerically istc for m50.25 andm50.5. The
simulations were done on a one dimensional lattice of s
1000 with periodic boundary conditions.P(m) was obtained
by averaging over 108 realizations.

In Fig. 1, the results form50.25 is shown.P(m) is mea-
sured forq5qc'0.380 whenp51.0, and for the growing
phase in whichp is set to zero. The criticalqc was fixed to be
that value ofq at which the distribution changed from a
exponential to a power law. A best fit givestc51.5860.04
andt51.2560.01. These should be compared with the a
lytical resultstc51.583 . . . andt51.25.

Figure 2 is as in Fig. 1, except thatm50.5 and qc
'0.448. A best fit givestc51.4760.04 andt51.1760.01.
These should be compared with the analytical resultstc
51.5 . . . andt51.166 . . . .
8-4
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VII. CONNECTION TO RELATED MODELS

In this section, similarities between the In-Out model a
other related models of aggregation are discussed. A m
that closely resembles the model studied in this paper is
charge model with adsorption@17–19#. In this model, there
is no longer the restriction that the masses have to be n
negative. Also,11 and21 masses are input at the same ra
In the limit of large time,P(m) for this model is a power law
P(m);umu25/3 for umu@1 in one dimension. This mode
could be expected to have the same behavior as the In
model at the critical point, since the growth velocity is ze
However, the exponent for the charge model is different fr
the value 11/6 obtained for the In-Out model, showing t
the restriction of non-negative masses is relevant. We n
ask whether it is relevant whenm.0.

Since the charge model was not studied earlier form.0,
we now give a short derivation of the power law expone
using scaling arguments. It was shown based on very gen

FIG. 1. The variation ofP(m) with m is shown at the critical
point ~bottom curve! and in the growing phase~top curve!. The
results are form50.25. A best fit for the curves give expone
valuestc51.5860.04 andt51.2560.01.

FIG. 2. The variation ofP(m) with m is shown at the critical
point ~bottom curve! and in the growing phase~top curve!. The
results are form50.50. A best fit for the curves give expone
valuestc51.4760.04 andt51.1760.01.
03612
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arguments that for the charge model, irrespective of the
fusion rates that@19#

^m2&;t, t@1. ~39!

Assuming scaling forP(m,t) as in Eq.~12! and the scaling
relation Eq.~11!, it is easy to see thatP(m);m2tch, where

tch5
~32m!d12

d12
, 0,m,2. ~40!

But this is the same astc obtained for the In-Out model@see
Eq. ~37!#. Thus, the charge model and the In-Out model a
pears to have the same behavior whenm.0.

A reason for this could be the following. Whenm50,
there is a chance that large positive masses get neutralize
large negative masses in the charge model. This proce
totally absent in the In-Out model, resulting in the expone
being different. Whenm.0, large positive and negativ
charges get immobilized and their collision becomes inf
quent. Hence, one could ignore this process in the cha
model and hence the two models become qualitatively si
lar. A pitfall of this argument is that it predicts thattc for
m50 should be less thantch , contrary to what is seen. Thus
the exact connection between these two models remains
clear.

Another model which is related to the In-Out model is
model of coagulation with fragmentation@7,20,21#. In this
model, the desorption at a site is accompanied by adsorp
at the neighboring site, thus conserving mass locally. In
model, there is a phase transition from a phase in wh
P(m) is exponentially distributed to one in which it is
power law, accompanied by a infinite aggregate which
commodates a finite fraction of the total mass. When
diffusion constant is mass dependent, it was shown that@21#
the exponenttc in the mean-field limit is exactly the same a
that of the In-Out model in the mean-field limit. However,
dimensions lower than the upper critical dimension, the
ponents in the model with mass conservation remains e
to the mean-field value, unlike the In-Out model.

VIII. SUMMARY AND CONCLUSIONS

To summarize, the exponents characterizing the ph
transition from a phase with finite mean height to one
which it grows linearly with time in the In-Out model wer
calculated. The model was extended to one in which partic
diffuse with a mass-dependent rateD(m)}m2m. The expo-
nents were shown to have a discontinues jump atm50. The
exponents are unrelated to previously studied universa
classes of nonequilibrium phase transitions.

There are several questions that remain unanswe
Other models which show a wetting transition as seen in
In-Out model have exponents which can be expressed
terms of exponents of absorbing phase transitions@9,10#.
Here, there seems to be no apparent connection to any
derlying absorbing phase transition. It would be interest
to find connections to other models of nonequilibrium pha
transitions.

The calculation of exponents in this paper for arbitrarym
8-5
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relied on the assumption that the exponents are monot
with dimension. While simulations do support the results t
are obtained, it is important to have a more rigorous deri
tion of the exponents without making this assumption. Al
one would expect logarithmic corrections to the power la
in two dimensions. These have been ignored in this pape
calculation of these corrections would be of interest.

A connection to the charge model was pointed out in S
VII. The models seem to be similar form.0, while different
for m50. The precise connection between the two would
worth exploring since the charge model is analytically mo
tractable. Finally, the discontinuity of exponents atm50 re-
mains a puzzle.

APPENDIX A: EXACT SOLUTION FOR mÄ1

In this appendix, we derive the exponents form51 in
arbitrary dimensions. We do so by examining the two po
correlations in the system in the steady state. To fix notat
let x8 denote one of the 2d nearest neighbors of the sitex.
Let h~x,x8,t! be the mass transferred from sitex to x8 at time
t in a time intervalDt. From the definition of the model, i
follows that

h~x,x8,t !5H mx with prob.
1

2d

Dt

mx
m

0 otherwise.

~A1!

To orderDt, the only nonzero two point correlation in th
noise is

^h~x,x8!2&5
mx

22mDt

2d
. ~A2!

Let I (x,t) be the mass transferred due to adsorption
desorption from the sitex at time t in an infinitesimal time
Dt. Then,

I ~x,t !5H 1 with probqDt

211dmx,0 with prob pDt

0 otherwise.

~A3!

To orderDt, the only nonzero two point correlation in th
input I is

^I ~x,t !2&5~q1ps!Dt, ~A4!

wheres5(m51P(m) is the occupation probability.
The massmx(t) at lattice sitex at time t evolves as

mx~ t1Dt !5mx~ t !2(
x8

h~x,x8,t !1(
x8

h~x8,x,t !1I ~x,t !.

~A5!

To obtain the two point correlations, we multiplymx(t
1Dt) by m0(t1Dt) and take averages over the possib
stochastic moves. Using Eqs.~A1!–~A5!, we obtain
03612
ic
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dC~x!

dt

522Cm~x!1
1

d (
j 51

d

(
k561

Cm~x1 , . . . ,xj1k, . . . ,xd!

12~q2p!r12pD~x!1dx,0~q1ps!1^m22m&

3S 2dx,02
1

d (
j 51

d

(
k561

dx1,0•••dxj 1k,0•••dxd,0D
~A6!

where C(x)5^mxm0&, Cm(x)5^mxm0
12m&, r5^m& and

D(x)5^mxdm0,0&.
Consider Eq.~A6! in the steady state when the time d

rivative is set to zero. For arbitrary values ofm, the right-
hand side of Eq.~A6! involves three unknowns:Cm(x),
D(x), andr. However, whenm51, a simplification occurs
because

C1~x!5r2D~x!, ~A7!

thus reducing the number of unknowns to two. Define

F~k!5(
x

@D~x!2r~12s!#eik•x. ~A8!

Solving for F(k) from Eq. ~A6!, we obtain

F~k!52r1
qd2prd

h~k!
, ~A9!

where

h~k!5(
i 51

d

cos~ki !2~11p!d. ~A10!

To obtainr, we use the fact that the constant term inF(k)
equals2r(12s). Then

r5
dpqg~p!

dp2g~p!2q
, ~A11!

where

g~p!5E
0

2pdk1

2p
•••E

0

2pdkd

2p

1

~11p!d2(
i 51

d

cos~ki !

.

~A12!

Thus, the mean density diverges as (q2qc)
21, where

qc5dp2g~p!. ~A13!

Specializing the result to one and two dimensions,

qc
1D5

p3/2

Ap12
,

8-6
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qc
2D5

2p2

p~11p!
KF 1

11pG , ~A14!

whereK is the complete elliptic integral of the first kind.
The form of the divergence of the density asq approaches

qc , namely^m&;q̃21 means that

f~22tc!51 for m51, ~A15!

in all dimensions. To obtain one more relation between
exponents, we considerd^m2&/dt for large times at the criti-
cal point. First, we need to invert Eq.~A9! to obtainD(1)
where1 denotes the site~1,0,0, . . . !. Inverting, we obtain

D~1!5
r~p2q!

q
1~q2pr!@12d~11p!g~p!#.

~A16!

We now make the assumption that the leading time dep
dence toD(1) is obtained by restoring the time dependen
of r. Then, whenx50, Eq. ~A6! reduces to

d^m2&
dt

'2r~ t !
~11p!~q2qc!

p
12qd~11p!g~p!.

~A17!

If we now take the limitq→qc beforet→`, then we obtain
that ^m2&;t. Thus

a~32tc!51 for m51, ~A18!

in all dimensions. Solving for the exponentstc , a, and f
from Eqs.~11!, ~A15!, and~A18!, we obtain

tc5
2d12

d12
, ~A19!

a5
d12

d14
, ~A20!

f5
d12

2
. ~A21!

Correspondinglyu5(d12)/2 andb51.

APPENDIX B: MEAN-FIELD SOLUTION

In this appendix, we derive the exponents form>0 using
a mean-field approximation. This approximation involves
noring correlations between the masses, i.e., replacing
probability distribution functions by product of single poi
distributions. Then, the master equation for the temporal e
lution of P(m,t) is
03612
e

n-
e

-
nt

o-

dP~m!

dt
52~m2m1s81p1q!P~m!1qP~m21!

1pP~m11!1 (
m851

m
P~m8!P~m2m8!

m8m
,

~B1!

dP~0!

dt
5ss82q1qs1pP~1!, ~B2!

wheres5(m51P(m) ands85(m51m2mP(m). The differ-
ent terms enumerate the number of ways the mass at a
tain site can change. Then it follows that

d^mn&
dt

5 (
k51

n21 S n
kD ^mk&^mn2k2m&1q1~21!nps

1 (
k51

n21 S n
kD @q1~21!kp#^mn2k&. ~B3!

Consider first the steady state solution of Eq.~B3! when the
time derivatives may be set to zero. Then, puttingn51, and
solving for the occupation probabilitys, we obtain

s5
q

p
. ~B4!

The mean-field equations take on a simpler form for
casesm50 andm51, and hence we solve them separate
from the arbitrarym case. Though all the mean-field exp
nents form50 were derived in Ref.@8# using the generating
function method, they will be rederived here using a differe
method which will be simpler to generalize to them>0 case.

1. mÄ0

On choosingn52 in Eq. ~B3! and taking the steady stat
limit, a quadratic equation for̂m& is obtained which can be
solved to yield

^m&5
p2q2A~p2q!224q

2
. ~B5!

The expression for̂ m& becomes invalid when expressio
under the square root sign becomes negative, thus fixingqc .
Solving, we obtain

qc5p1222A11p, ~B6!

where the sign is chosen by the condition thatqc50 at p
50. Consider now the equation corresponding ton53 in
Eq. ~B3!. Solving for ^m2&, we obtain

^m2&5
~p1q!^m&

p2q22^m&
. ~B7!

But the denominator tends to zero asAq̃, whereq̃5qc2q.
Therefore, near the transition point^m2& diverges as
8-7
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^m2&;
1

q̃1/2
. ~B8!

Consider now the equation corresponding ton54 in Eq.
~B3!. Solving for ^m3&, we obtain

^m3&5
3^m2&213~q1p!^m2&12~q2p!^m&1q

2~p2q22^m&!
~B9!

;
1

q̃3/2
, q̃→0. ~B10!

Knowing the behavior of̂m2& and ^m3& near the transition
point, we immediately obtain

f~32tc!5
1

2
, ~B11!

f~32tc!5
3

2
, ~B12!

which can be solved to give

tc55/2, ~B13!

f51. ~B14!

To calculatef and t we had first taken the limitt→` fol-
lowed by the limitq̃→0. In order to calculatea, we need to
take the limits in the opposite order, namelyq̃→0 followed
by t→`. We first note that in this limits5q/p and ^m&
5(p2q)/2. Then choosingn53 in Eq. ~B3!, we obtain

d^m3&
dt

5
3~p22qc

2!

2
. ~B15!

Thus,

a~42tc!51. ~B16!

Substituting fortc , we obtain

a5
2

3
. ~B17!

Thus, in the mean-field limit, the scaling function takes
the form

P~m,q̃,t !;
1

m5/2
YS mq̃,

m

t2/3D , m50. ~B18!

2. mÄ1

We start again with Eqs.~B3! and ~B4!. For m51, Eq.
~B3! simplifies becausêmn2k2m& reduces to an integer mo
ment ofm. Choosingn52 in Eq.~B3! in the steady state, we
obtain
03612
^m&5
pq

p22pq2q
. ~B19!

The mean masŝm& diverges whenq5qc , where

qc5
p2

11p
. ~B20!

Choosingn53 in Eq. ~B3! in the steady state, we obtain

^m2&5p
^m&21~q1p!^m&

p22pq2q
. ~B21!

Equations~B19! and ~B21! imply that ^m&;q̃21 and ^m2&
;q̃23 when q̃→0. Thus,

f~22tc!51, ~B22!

f~32tc!53. ~B23!

Solving, we obtain

tc5
3

2
, ~B24!

f52. ~B25!

In order to calculatea, we need to setq5qc and take the
large time limit. Then choosingn53 in Eq. ~B3!, we obtain

d^m2&
dt

;t2ac(22t)211
2p2

~11p!
. ~B26!

If we assume that the first term is the dominant term, then
reach a contradiction fort ~namely,t51!. The other alterna-
tive is to that^m2&;t, implying thata(32tc)51 or

a5
2

3
. ~B27!

Thus, in the mean-field limit, the scaling function takes
the form

P~m,q̃,t !;
1

m3/2
YS mq̃2,

m

t2/3D , m51. ~B28!

3. mÌ0

We will follow the same procedure as for them50 and the
m51 cases. However, for arbitrarym, we are no longer able
to determine neither the critical valueqc nor the exponentf.
Consider the equations arising from choosingn52 and n
53 in Eq. ~B3! in the steady state,

^m12m&5p2q2
q

^m&
, ~B29!

^m22m&5
q^m2&

^m&2
2~p1q!. ~B30!
8-8
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To satisfy Eq.~B30!, we require that̂ m& diverges at the
critical point. Substituting the scaling form, we obtain

f~32m2tc!5f~32tc!22f~22tc! ~B31!

implying that

tc522
m

2
. ~B32!

To calculate the exponenta, all we require is that̂m12m& is
finite at the critical point and is equal top2q. This follows
from Eq. ~B29!. Now, if we stay at the transition point, w
obtain thatd^m2&/dt52q implying that

^m2&;t. ~B33!

Thereforea(32tc)51 or

a5
2

21m
. ~B34!

Thus, in the mean-field limit, the scaling function takes
the form

P~m,q̃,t !;
1

m22m/2
YS mq̃f,

m

t2/(21m)D , 0,m,2.

~B35!

APPENDIX C: SOLUTION FOR dÄ0

In zero dimensions, the problem becomes analytica
tractable as diffusion no longer plays a role. Therefore,
exponents are independent ofm. The master equation for th
evolution of the mass distributionP(m) is

dP~m!

dt
52~p1q!P~m!1pP~m11!1qP~m21!,

~C1!

dP~0!

dt
52qP~0!1pP~1!. ~C2!
ev

ev

s.

03612
y
e

The steady state solution is obtained by setting the time
rivatives to zero. It is then straightforward to obtain

P~m!5
p2q

p S q

pD m

, m>0. ~C3!

This solution is valid whenq,p. For q>qc5p, there is no
nontrivial steady state solution. The typical mass diverges
q approachesqc as (q2qc)

21; therefore

f51. ~C4!

Also, the occupation probabilitys51 whenq5qc . Sinces
cannot increase beyond 1, it remains stuck at 1 for all furt
values ofq. When q̃5q2qc is positive,d^m&/dt5q2ps
5q̃. This means thatu51.

The exponentstc anda may be obtained by solving th
problem atq5qc . In this case if one were to identifym as
the coordinate of a random walker, then the problem redu
to a problem of a random walker with a reflecting barrier
the origin. This problem is easily solved@22# and in the limit
of large time,

P~m,t !'
1

Apqt
expS 2m2

4qt D , t@1. ~C5!

The exponentstc anda may be read off from Eq.~C5! to be

tc51, ~C6!

a5
1

2
, ~C7!

in zero dimensions.
When q.qc , the problem reduces to the problem of

random walker with a drift and a reflecting barrier at t
origin. Again, this problem is easily solvable,

P~m,t !5
1

m

m

~q2p!t
dS m

~q2p!t
21D , m,t@1. ~C8!

Clearly, the exponentg51 @see Eq.~15! for definition#.
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